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Abstract

The Birnbaum-Saunders distribution was originally developed to model the
rupture time of metals exposed to fatigue. This article presents an extension
of this distribution, generated from an Elliptically Contoured distribution, in
which the density and some of its properties are obtained. Explicit expressions
for the density are found for a large number of specific Elliptic distributions,
such as Pearson Type VII, t, Cauchy, Kotz Type, Normal, Bessel, Laplace and
Logistic.
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1 Introduction

Fatigue is a class of structural damage that occurs when a material is exposed to fluctuating stress
and tension. The first such problem was identified in the axles of carriages and wagons in the early
1800s [21]. Fatigue was also responsible for aeroplane crashes affecting British cargo planes in the
1950s [5], and has been observed in many other cases.

Statistical models for processes of fatigue enable us to describe the random variation of failure times
associated with materials exposed to fatigue as a result of different patterns of cyclic forces. Such
materials can be characterised by the values presented by the parameters of associated empirical
laws. These characterisations are important in forecasting the behavior of vulnerable materials
under different conditions. For example, we are often interested in predicting the time elapsing
before fatigue occurs under various low levels of stress. Nevertheless, performing a life fatigue test
under stress conditions requires a great deal of time. To avoid this problem, we can observe the
failure times of materials at high levels of stress and then use the empirical characterisations of

∗This article was written by the author during his stay as Visiting Professor in the Dept. of Statistics and
Computation at the Universidad Autónoma Agraria Antonio Narro, México.
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material properties to predict the corresponding times for lower levels of stress. This type of test is
termed an accelerated life test.

The Birnbaum-Saunders distribution (see [3] and [4]) was derived from a model that showed how
material failure is due to the development and growth of a dominant crack. Desmond (see [8] and [9])
showed that the Birnbaum-Saunders distribution provides a total description of the failure T that
occurs when an accumulated damage D(t) exceeds a threshold value, such that T = inf{t : D(t) >
threshold}. Although this distribution is known as Birnbaum-Saunders, it was in fact obtained
previously by Freudental and Shinokuza (see [15], cited in [16, p. 654]).

The Birnbaum-Saunders distribution is the distribution of

S = β

[

α

2
V +

√

(α

2
V
)2

+ 1

]2

,

where V ∼ N(0, 1), α > 0 is the shape parameter and β > 0 is the scale parameter and the median
of the distribution. We shall use the notation S ∼ BS(α, β). The density of S ∼ BS(α, β) is

fS(s) =
exp

(

α−2
)

2α(2πβ)1/2
s−3/2 (s+ β) exp

[

− 1

2α2

(

s

β
+
β

s

)]

, s > 0.

It is straightforward to show that if S fits a Birnbaum-Saunders distribution, then

V = α−1

[
√

S

β
−
√

β

S

]

∼ N(0, 1). (1)

Recent proposals have discussed a family of multivariate distributions whose density contours have
the same elliptic shape as that of the Normal distribution. These, however, also include distributions
with tails that are weighted more and less than those of the Normal distribution. Moreover, the
Normal distribution is a particular case within this family. Such distributions are termed Elliptic
Contour or simply Elliptic distributions.

Elliptic distributions have been studied by many authors, such as [17], [7] and [6]. Although the use
of these distributions began in the 1970s, pioneering studies were made by such as [20] and [19]. At
present, a large body of Normal theory is being reconstructed using elliptic distributions (see, for
example, the books [1], [12], [13], and [14], and the more recent studies [2], [18], [10] and [11].

For the case of a random variable (one-dimensional case), Elliptic distributions correspond to all the
symmetric distributions in IR. Specifically, a random variable X fits an elliptic distribution if its
characteristic function is

ψX(t) = exp(itµ)φ(t2σ2), (2)

with φ : IR→ IR; or if the density of X is given by

fX(x) = c g

[

(x− µ)2

σ2

]

;x ∈ IR, (3)

where g(u), with u > 0, is a real function and corresponds to the kernel of the density of X and
c is the normalisation constant such that f

X
(x) is a density. This is denoted as X ∼ EC(µ, σ2;φ)

or X ∼ EC(µ, σ2; g), respectively. In general, µ is the position parameter, and coincides with the
mean if the first moment of the distribution exists. σ2 is the scale parameter, the variance of which,
if the first two moments of the distribution exist, is σ2

0 = c0σ
2, where c0 = −2φ′(0), and φ′ is the

derivative of φ, given in (2). Some specific Elliptic distributions are presented in Table 1.
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Table 1: Explicit forms of the kernels and normalisation constants of the densities of the Elliptic
distributions indicated, following (3).

Elliptic law Notation Constant (c) Kernel (g(·))
(µ ∈ IR and σ2 > 0)

Pearson VII PV II(µ, σ2; q, r),
Γ(q)

(rπ)1/2Γ(q − 1/2)σ

(

1 +
(x − µ)2

rσ2

)

−q

r > 0 and q > 1/2

Type Kotz K(µ, σ2; q, r, s)
sr

2q−1

2s

Γ
(

2q−1
2s

)

σ

(

(x − µ)2

σ2

)q−1

exp
(

r
[

(x−µ)2

σ2

]s)

r, s > 0 and q > 1/2

Bessel a B(µ, σ2, r, q)
1

2qrq+1π1/2Γ(q + 1/2)σ

(

(x − µ)2

σ2

)q/2

(

Kq

(

1

r

(

(x − µ)2

σ2

)1/2
))

−1

r > 0 and q > −1/2

Special Case SC(µ, σ2)
21/2

πσ

1
(

1 +
(

x

σ

)4
)

Logistic Log(µ, σ2)
1

σ

∞
∫

0

z−1/2
exp(−z)

1 + exp(−z)
dz

exp

(

−
(x − µ)2

σ2

)

(

1 + exp

(

−
(x − µ)2

σ2

))2

aWhere

Kq(z) =
π

2

I−q(z) − Iq(z)

sin(qπ)
, | arg(z)| < π,

with q an integer, this is the third-class modified Bessel function and

Iq(z) =

∞
∑

k=0

1

k!Γ(k + q + 1)

(

z

2

)q+2k

, |z| < ∞, | arg(z)| < π.
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Remark 1

i) The t distribution (denoted by t(ν)), where ν represents its degrees of freedom, is a particular

case of the Pearson Type VII distribution when q = (ν + 1)/2.

ii) The Cauchy distribution is a particular case of the t(ν) distribution when ν = 1. An important

characteristic of this Elliptic distribution is that it has no moments.

iii) The distribution termed ”Special Case” is cited in [14, p.70] and also has no moments.

iv) The Normal distribution is a particular case of the Kotz Type distribution when q = s = 1 and

r = 1/2.

iv) The Laplace distribution is a particular case of the Bessel distribution when q = 0 and r =

σ/
√

2.

Strictly speaking, the expression given in (1) is fulfilled only asymptotically (see Equation 2.3 in [3]).
In the same source, (1) is taken as an equality, based on a heuristic, non-mathematical argument,
based specifically on a physical support.

In this article, also on the basis of a heuristic argument, (1) is replaced by the supposition

U = α−1

[
√

T

β
−
√

β

T

]

∼ EC(0, 1; g), α, β > 0, (4)

in order to determine the distribution of T . This supposition is based on the search for faster-
growing life distributions, with a greater or lesser kurtosis and/or with left tails that are more or
less weighted than those of the Birnbaum-Saunders distribution, based on the Normal distribution,
among other interesting properties such as the absence of moments in the life distribution. By these
means, it is possible to generalise the Birnbaum-Saunders distribution on the basis of an Elliptic
distribution. We find the density and other interesting properties of the generalised Birnbaum-
Saunders distribution, as well as explicit expressions for the density of a large number of specific
Elliptic distributions, including Pearson Type VII, t, Cauchy, Kotz Type, Normal, Bessel, Laplace,
Special Case and Logistic distributions. Finally, for the sake of illustration, we include some figures
showing these densities.

2 A New Family of Life Distributions

This section describes how the density of a Birnbaum-Saunders distribution is obtained on the basis
of an Elliptic distribution.

From (4), we find that

T = β

[

α

2
U +

√

(α

2
U
)2

+ 1

]2

,

fits a generalised Birnbaum-Saunders distribution, denoted as T ∼ GBS(α, β; g).
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Theorem 1 Let T ∼ GBS(α, β; g). Then, the density of T is given by

fT (t) =
c

2αβ1/2
t−3/2(t+ β) g

(

1

α2

[

t

β
+
β

t
− 2

])

, t > 0,

where c is given in (3).

Proof. Let fU (u) = c h(u2). Taking u =
1

α

[

√

t

β
+

√

β

t

]

, for which the Jacobian is
t−3/2(t+ β)

2αβ1/2
,

we obtain

fT (t) = fU

(

1

α

[

√

t

β
+

√

β

t

])

∣

∣

∣

∣

du

dt

∣

∣

∣

∣

= c h





1

α2

[

√

t

β
+

√

β

t

]2




t−3/2(t+ β)

2αβ1/2

=
c

2αβ1/2
t−3/2(t+ β) g

(

1

α2

[

t

β
+
β

t
− 2

])

.

The following are explicit expressions for the density of a generalised Birnbaum-Saunders distribution
obtained from Pearson Type VII, t, Cauchy, Kotz Type, Normal, Bessel, Laplace, Special Case and
Logistic distributions, the proofs of which are immediate from Theorem 1. These are accompanied
by figures showing these densities (see Appendix A).

Corollary 1 (Pearson Type VII distribution) Let T ∼ GBS(α, β; g), with g(·) as given in

Table 1. Then, the density of T is given by

fT (t) =
Γ(q)

2α(rπβ)1/2Γ(q − 1/2)
t−3/2(t+ β)

(

1 +
1

rα2

[

t

β
+
β

t
− 2

])

−q

,

with t, α, β, r > 0 and q > 1/2.

Corollary 2 (t distribution) Let T ∼ GBS(α, β; g), with g(·) as given implicitly in Table 1 (see

Remark 1 i)). Then, the density of T is given by

fT (t) =
Γ((ν + 1)/2)

2α(νπβ)1/2Γ(ν/2)
t−3/2(t+ β)

(

1 +
1

να2

[

t

β
+
β

t
− 2

])

−
ν+1

2

,

with t, α, β, ν > 0 and q > 1/2.

Corollary 3 (Cauchy distribution) Let T ∼ GBS(α, β; g), with g(·) as given implicitly in Table

1 (see Remark 1 ii)). Then, the density of T is given by

fT (t) =
1

2παβ1/2
t−3/2(t+ β)

(

1 +
1

α2

[

t

β
+
β

t
− 2

])

−1

,

with t, α, β > 0.
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Corollary 4 (Special Case distribution) Let T ∼ GBS(α, β; g), with g(·) as given in Table 1.

Then, the density of T is given by

fT (t) =
t−3/2 (t+ β)

πα(2β)1/2

(

1 +
1

α4

[

t

β
+
β

t
− 2

]2
)

−1

,

with t, α, β > 0.

Corollary 5 (Kotz Type distribution) Let T ∼ GBS(α, β; g), with g(·) as given in Table 1.

Then, the density of T is given by

fT (t) =
sr(2q−1)/(2s) t−3/2(t+ β)

2α2q−1β1/2Γ
(

2q−1
2s

)

(

t

β
+
β

t
− 2

)q−1

exp

(

− r

α2s

[

t

β
+
β

t
− 2

]s)

,

with t, α, β, r, s > 0 and q > 1/2.

Corollary 6 (Bessel distribution) Let T ∼ GBS(α, β; g), with g(·) as given in Table 1. Then,

the density of T is given by

fT (t) =

(

t

β
+
β

t
− 2

)q/2

t−3/2(t+ β)

(2α)q+1(πβ)1/2Γ(q + 1/2)rq+1
Kq

(

1

rα2

[

t

β
+
β

t
− 2

]1/2
)

,

where Kq(z) is given in Table (1) and with t, α, β, r > 0 and q > −1/2.

Corollary 7 (Logistic distribution) Let T ∼ GBS(α, β; g), with g(·) as given in Table 1. Then,

the density of T is given by

fT (t) =
t−3/2(t+ β)

2αβ1/2

∞
∫

0

z−1/2
exp(−z)

1 + exp(−z) dz

exp

[

− 1

α2

[

t

β
+
β

t
− 2

]]

[

1 + exp

[

− 1

α2

(

t

β
+
β

t
− 2

)]]2 , t > 0.

3 Some Properties of the Generalised Birnbaum-Saunders

Distribution

In this section, we discuss some properties of the generalised Birnbaum-Saunders distribution.

In the Normal case, clearly aT , with a > 0, this is also a Birnbaum-Saunders distribution, with
aβ and α parameters. Moreover, the distribution of T−1 is the same as that of T , replacing β
with β−1, while the value of the α parameter does not change (see [4]). This property is invariant
for all generalised Birnbaum-Saunders distributions, in the sense that aT ∼ GBS(α, aβ; g) and
T−1 ∼ GBS(α, β−1; g), as shown in the following theorem.

Theorem 2 Let T ∼ GBS(α, β; g). Then,
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i) As a > 0, Y = aT ∼ GBS(α, aβ; g) and

ii) Y = T−1 ∼ GBS(α, β−1; g).

Proof.

i) Let a > 0 and Y = aT . Then T = Y/a, and so dT = (1/a)dY . Therefore, the Jacobian is
|J | = 1/a. Then, and given that

fT (t) =
c

2αβ1/2
t−3/2(t+ β) g

(

1

α2

[

t

β
+
β

t
− 2

])

,

we find that

fY (y) = fT (y/a) |J |

=
c

2αβ1/2

(y

a

)

−3/2 (y

a
+ β

)

g

(

1

α2

[

y/a

β
+

β

y/a
− 2

])

1

a

=
c

2α(aβ)1/2
y−3/2 (y + aβ) g

(

1

α2

[

y

aβ
+
aβ

y
− 2

])

ii) Now let Y = T−1. Then T = Y −1, and so dT = −Y −2dY . Thus, the Jacobian is |J | = Y −2,
and hence

fY (y) = fT (y−1) |J |

=
c

2αβ1/2
(y−1)−3/2(y−1 + β) g

(

1

α2

[

y−1

β
+

β

y−1
− 2

])

y−2.

Note that
1

α2

[

y−1

β
+

β

y−1
− 2

]

=
1

α2

[

β−1

y
+

y

β−1
− 2

]

and that
y−3/2

β1/2
(y−1 + β)y−2 =

y−1/2

β1/2

(

1

y
+ β

)

= β1/2y−3/2

(

1

β
+ y

)

.

Thus, finally,

fY (y) =
c

2α(β−1)1/2
y−3/2(y + β−1) g

(

1

α2

[

y

β−1
+
β−1

y
− 2

])

.

Theorem 3 The generalised Birnbaum-Saunders distribution possesses moments if and only if the

corresponding Elliptic distribution that generates it possesses moments.

Proof.

IE

([

T

β

]r)

= IE





[

α

2
U +

√

(α

2
U
)2

+ 1

]2r


 .
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From the Binomial Theorem, (a+ b)m =

r
∑

k=0

(

m
k

)

am−kbk, we obtain

IE

([

T

β

]r)

=

2r
∑

k=0

(

2r
k

)

IE

(

[

(α

2
U
)2

+ 1

]k/2
[α

2
U
]2r−k

)

.

Now, note that if s is odd IE

(

[

(α

2
U
)2

+ 1

]t
[α

2
U
]s
)

= 0. Then,

IE

([

T

β

]r)

=

r
∑

k=0

(

2r
2k

)

IE

(

[

(α

2
U
)2

+ 1

]k
[α

2
U
]2(r−k)

)

.

By expanding the binomial (·)k, we finally obtain that

IE

([

T

β

]r)

=

r
∑

k=0

(

2r
2k

)

IE

(

k
∑

s=0

(

k
s

)

[(α

2
U
)]2s (α

2

)2(r−k)

[U ]
2(r−k)

)

=
r
∑

k=0

(

2r
2k

) k
∑

s=0

(

k
s

)

IE
[

(U)
2(r+s−k)

] (α

2

)2(r+s−k)

.

Therefore, IE

([

T

β

]r)

exists if and only if IE
[

(U)
2(r+s−k)

]

exists.

Corollary 8 If T ∼ GBS(α, β; g) and this has moments, then

IE

([

T

β

]r)

=

r
∑

k=0





2r

2k





(2(r + s− k))!

(r + s− k)!
φ(r+s−k)(0)

(α

2

)2(r+s−k)

,

where φ is given in (2).

Proof. From (2) we have ψU (t) = φ(t2). Thus,

ψ
(m)
U (0) =















m!

(m/2)!
φ(m/2)(0); if m is even,

0; if m is odd,

(see Theorem 3.2.1, [14, pp.91-92]). Then, if the moments exist,

IE(Um) =











1

im
ψ

(m)
U (0); ∀ m,

ψ
(m)
U (0); if m is even.

And so, finally,

IE

([

T

β

]r)

=

r
∑

k=0

(

2r
2k

)

(2(r + s− k))!

(r + s− k)!
φ(r+s−k)(0)

(α

2

)2(r+s−k)

.
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Corollary 9 If T ∼ GBS(α, β;φ) and this has moments, then

i) IE(T ) = β(1 + φ(1)(0)α2) y

ii) Var(T ) = β2[(6φ(2)(0)α4 + 4φ(1)(0)α2 + 1) − (1 + φ(1)(0)α2)2].

Proof.

i) Here r = 1. Therefore

IE

(

T

β

)

=

1
∑

k=0

(

2
2k

)

(2(s− k + 1))!

(s− k + 1)!
φ(s−k+1)(0)

(α

2

)2(s−k+1)

=
φ(1)(0)α2

2
+

(

1 +
φ(1)(0)α2

2

)

= 1 + φ(1)(0)α2.

And then, IE(T ) = β(1 + φ(1)(0)α2).

ii) As Var(T ) = IE(T 2) − (IE(T ))2, we have

IE

(

[

T

β

]2
)

=

2
∑

k=0

(

4
2k

) k
∑

s=0

(

k
s

)

(2(s− k + 2))!

(s− k + 2)!

φ(s−k+2)(0)
(α

2

)2(s−k+2)

=
3φ(2)(0)α4

4
+ 6

(

φ(1)(0)α2

2
+

3φ(2)(0)α4

4

)

+

(

1 + φ(1)(0)α2 +
3φ(2)(0)α4

4

)

= 6φ(2)(0)α4 + 4φ(1)(0)α2 + 1.

Then, IE(T 2) = β2(6φ(2)(0)α4 + 4φ(1)(0)α2 + 1).

Finally,

Var(T ) = β2(6φ(2)(0)α4 + 4φ(1)(0)α2 + 1) − β2(1 + φ(1)(0)α2)2

= β2[(6φ(2)(0)α4 + 4φ(1)(0)α2 + 1) − (1 + φ(1)(0)α2)2].

4 Conclusions

In this article, we have discussed a generalisation of the Birnbaum-Saunders life distribution, from
the basis of an Elliptic distribution, thus obtaining its density and some important properties. We
have thus obtained a new family of life distributions in different and wider-ranging situations, such as
life distributions that do not have moments, for example, when the generalised Birnbaum-Saunders
distribution is obtained from the Cauchy and Special Case distributions. Figures 1-8 show the
following, for the specified parameters: life distributions with left tails that are more weighted or less
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weighted, when these are generated on the basis of Pearson Type VII, t, Cauchy, Kotz Type, Bessel
and Laplace distributions. Life distributions with a more accelerated initial growth are obtained
from Pearson Type VII, t and Kotz Type distributions. Life distributions with bimodality are
obtained from Cauchy, Special Case and Kotz Type distributions. The latter may seem somewhat
unusual among life data, but this situation is found, for example in a marine aquarium, in how the
aquarium evolves and matures. With these results, we generate a family of life distributions with a
large coverage of life situations.
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A Density Graphs of a Generalised Birnbaum-Saunders Dis-

tribution

Figure 1: Density graphs of a generalised Birnbaum-Saunders life distribution for α = 0.5 and

β = 0.8, obtained from a Pearson Type VII distribution with: (a) m = 10 and s = 10, (b) m = 2

and s = 10, (c) m = 10 and s = 2, and (d) m = 10 and s = 30.
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Figure 2: Density graphs of a generalised Birnbaum-Saunders life distribution for α = 0.5 and

β = 0.8, obtained from a distribution: (a) t with n = 3 degrees of freedom, (b) t with n = 30 degrees

of freedom, (c) t with n = 10 degrees of freedom, and (d) Normal.

Figure 3: Density graphs of a generalised Birnbaum-Saunders life distribution for α = 0.5 and

β = 0.8, obtained from a Cauchy distribution.
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Figure 4: Density graphs of a generalised Birnbaum-Saunders life distribution for α = 0.5 and

β = 0.8, obtained from a Special Case distribution.

Figure 5: Density graphs of a generalised Birnbaum-Saunders life distribution for α = 0.5 and

β = 0.8, obtained from a Kotz Type distribution with: (a) r = 2 and s = 1 and q = 3, (b) r = 2

and s = 1 and q = 2, (c) r = 2 and s = 1/2 and q = 2, and (d) r = 5 and s = 1/2 and q = 2.
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Figure 6: Density graphs of a generalised Birnbaum-Saunders life distribution for α = 0.5 and

β = 0.8, obtained from a Bessel distribution with: (a) r = 1/4 and q = 10, (b) r = 1/4 and q = 25,

(c) r = 1 and q = 1/2, and (d) r = 2 and q = 0.

Figure 7: Density graphs of a generalised Birnbaum-Saunders life distribution for α = 0.5 and

β = 0.8, obtained from a Laplace distribution.
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Figure 8: Density graphs of a generalised Birnbaum-Saunders life distribution for α = 0.5 and

β = 0.8, obtained from a Logistic distribution.
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